

MINIMAL QUANTITY LUBRICATION MQL

Innovative solutions from the spindle to the cutting edge from Guhring's GM 300 program to optimize production

Spindle clamping systems

Tool holders ISO 12164-1/DIN 69893-1

HSK-A

Automatic tool clamping

Manual tool clamping

Minimal Quantity Lubrication offers numerous advantages - benfit from them with MQL solutions from Guhring!

MQL saves time and money:

- increased cutting rates reduce the machining times and, therefore, your manufacturing cost.
- longer tool life through more consistent cooling without sudden thermal shock reduce the number of tool changes and your tooling requirement.
- the workpieces remain dry, so that you can save on the de-greasing.
- dryer chips can be disposed of easier and more cost-efficient.
- no cost of soluble oil maintenance.
- new machines require less investment in the cooling system.

MQL increases quality:

· the surface quality of the workpieces to be machined is improved by the pure lubricant.

MQL is environmentally friendly and safe:

- there is no spreading of neat oil around the machine.
- there are less environmentally harmful residuals.

MQL with Guhring is simple and cost-efficient:

- benefit from a complete system from MQL clamping set and MQL tool holders to MQL tools from one source.
- utilise the excellent price-performance-ratio of Guhring's MQL solutions, to a large extent available as a standard program.
- remain flexible with Guhring's MQL solutions. Guhring's MQL system is completely compatible with the conventional system for wet machining. In addition, Guhring provides solutions for 1-channel as well as 2-channel MQL systems.

Introduction

From special solution to standard range

Reducing the machining costs is the main aim of every production facility. A detailed examination of the machining process displays a cost structure where alongside the machine and tooling costs especially the costs of cooling/lubrication are a major contributing factor. Therefore, reducing the cooling lubricant requirement offers a multifaceted savings potential that needs to be utilised.

Minimising the cooling lubricant does not only bring cost advantages. A lower cooling lubricant consumption is also beneficial to the protection of the environment and health. Therefore, the research and development in minimal quantity lubrication MQL already began in the mid 1990's and Guhring was and to this day remains one of its pioneers.

When at first MQL systems where exclusively established as special solutions or - from a present day perspective one may even say: at worst - applying conventional clamping sets, tool holders and tools, the increased acceptance of the machining technology has presently led to a cumulative standardisation and is currently culminating in the drafts of corresponding DIN-standards.

The aim of MQL machining

As well as the reduction of the cooling lubricant requirement whilst maintaining a maximum cooling and lubricating effect when also machining especially deep holes, MQL technology also offers further saving potentials. The acquisition of a new MQL lubricating system is considerably more cost-efficient than conventional cooling lubrication.

Therefore, the minimal proportion of cooling lubricant in the medium not only reduces the cost of the cooling lubricant itself. Especially the consequential costs of cooling decrease considerably. A reduced cooling lubricant application results in significantly lower cleaning costs for the components. In addition, the disposal costs for used cooling lubricant or swarf are reduced. Summing up, these advantages outweigh the relatively large investment in modifying the machines and systems for MQL machining. Added to that are the indirect financial advantages for the protection of the environment and health.

When designing the clamping sets, tool holders and tools for MQL machining the aim was to keep the thermal load at the tool point and therefore wear to a minimum and simultaneously maintain effective chip evacuation especially from deep holes so that the economic efficiency and productivity of MQL machining is equal to the high level of conventional wet machining.

Guhring's MQL delivery system

The development of present-day MQL systems

The quest to reduce the costs in matters concerning cooling lubricants initially resulted in a multitude of provider and customer specific solutions for MQL machining. However, with its basic research for MQL machining, Guhring created the pre-requisites for practical MQL technology that included all components in the development, from clamping set to the cutting edge which led to the first MQL delivery system.

An essential characteristic of Guhring's first MQL delivery system was the delivery of the cooling lubricant without pockets via a special MQL coolant delivery unit, a MQL-suitable tool shank end and the tapered length setting screw in order to ensure optimal cooling lubricant supply at

the tool point even applying a medium with a low cooling lubricant content. Detailed studies attested a cooling lubricant delivery to the cutting edge without loss, a delay-free reaction of minimal quantity lubrication and a marginal cutting edge temperature increase. In addition, optimised flutes ensure a problem-free chip evacuation even from deep holes. The only advancement required for Guhring's first MQL delivery system was the addition of automatic length adjustment when clamping the tools.

Guhring's current MQL system

By incorporating the MQL length adjustment screw to Guhring's first MQL delivery system in 2007, the original drawback was eliminated. There is, therefore, currently a MQL delivery system available to the customer that optimally meets the requirements of the present-day production process.

Furthermore, Guhring puts great importance on a complete compatibility of the MQL technology in the chain of clamping set - chuck - tool. Subsequently, Guhring's MQL clamping set can be exchanged problem-free with a corresponding

clamping set for conventional cooling thanks to the identical spindle contour. Guhring's MQL tool holders - hydraulic, shrink fit und synchro chucks - are all designed for application in combination with the MQL clamping set, but can also be applied with conventional cooling. The user, therefore, benefits from a standardised system and a clearly reduced stock keeping thanks to compatible components.

Guhring's MQL tool technology

MQL suitable shank end

Because an extremely low volume of lubricant is applied with minimal quantity lubrication, the delivery of these low coolant quantities to the effective area is of utmost importance. Hereby, the geometric design of the shank end is of main significance for secure delivery of the lubricant. In a comprehensive series of tests we have thoroughly investigated different geometric designs of the shank end and subsequently determined the optimal design. The Guhring developed conical shank end optimally satisfies the relevant MQL conditions:

- no lubricant pockets
- minimal dead area
- simple operation
- cost-efficient production

Suitable shank ends with corresponding screws

Direct response without loss

Spray tests with conical MQL shank end from Guhring show that the cooling lubricant exits the tool directly at the start and stops exactly at the end of the spraying process. The strength of the spray film indicates that a high cooling lubricant volume is available throughout the entire duration of spraying.

The spray tests were carried out in rotation, i.e under real operating conditions with the following parameters: n=10,000rev./min, f=0.06mm/rev., air volume: 55NI/min, neat oil volume: 30ml/h.

Evaluation matrix

Shank end	Handling	Cost-efficient production	Minimal dead areas geom. analysis	Leak-proof
Plain w/o slot	++	++	-	-
Plain w. sickle-shaped slot	++	+	-	-
Tapered with slot	++	+	+	++
Recessed end with labyrinth seal	-	-	++	++

(++ = very good properties, + = good properties, - = poor properties)

Optimised tool geometries for MQL machining:

Optimised flute cross-section

Guhring MQL tools have a flute geometry specially adapted to the particular requirements for an optimal chip evacuation from deep holes.

Maximum coolant duct cross-section

To optimally provide the cutting edge with lubricant, the tools are manufactured with coolant ducts that have a maximum cross-section. This ensures an effective lubricant supply to the cutting edge as well as an excellent chip evacuation.

Problem-free chips

Chips, evacuated problem-free also from deep holes effectively prevent chip congestion and the associated jamming of the tool.

MQL considerably reduces the operating temperature

In comparison to entirely dry machining, MQL can considerably reduce machining temperatures. The result is longer tool life and increased process reliability. Thermographic experiments at Guhring showed that cooling with dry air reduces the temperature at the tool point by more than 200 degrees. The addition of a few millimetres of neat oil per hour, hence MQL, resulted in an even lower temperature thanks to the reduced friction.

Guhring has determined the heat development at the drill point when applied without cooling or with internal cooling with air or MQL respectively with thermographic cameras. With MQL, the temperature of the tool and subsequently the transfer of heat to the workpiece is considerably reduced.

The top MQL clamping set from Guhring – now for many spindle contours!

- The Genuine Article: the clamping set with Guhring contour
- New: Guhring M contour
 New: PowerClamp/KomLoc®

Automatic tool clamping with MQL

Spindle clamping systems with drawbar

Application in machining centres, milling and turning machines

MQL HSK-A hydraulic chuck for automatic tool change

Product information

- new MQL standard
- for 1-channel systems
- balancing quality: G6.3 / 15,000 rev./min
- clamping-Ø for shank tolerance h6
- axial length setting

Scope of delivery

- incl. MQL length adjustment screw with sealing lip and coolant delivery set Guhring no. 4939
- incl. clamping key Guhring no. 4912

HSK-A	for						SW	kg	Code no.	Availability
d ₃	clamping-Ø d ₁ h6 mm	d ₂ mm	d ₄ mm	l ₁ mm	l ₂ mm	l ₅ mm				
50	6	26	40	80	36	38	4	0.95	6,050	•
50 50	8 10	28 30	40 40	80 85	36 40	38 44	4	0.95 0.95	8,050 10,050	•
50	12	32	40	90	45	49	4	0.95	12,050	
50	14	34	40	90	45	49	4	0.95	14,050	•
50 50	16 18	38 40	53 57	95 95	48 48	36 36	5 5	1.25 1.25	16,050 18,050	•
50	20	42	60	100	50	39	5	1.25	20,050	•
63 63	6 8	26 28	50 50	80 80	36 36	34.5 35.5	5 5	1.25 1.25	6,063 8,063	•
63	10	30	50	85	40	40	5	1.25	10,063	•
63	12	32	50	90	45	45	5	1.35	12,063	
63 63	14 16	34 38	50 50	90 95	45 48	46 51	5 5	1.35 1.45	14,063 16,063	•
63	18	40	50	95	48	52	5	1.45	18,063	•
63	20	42	50	100	50	58	5	1.45	20,063	
63	25	57	63	115	56	50	6	2.45	25,063	•
63	32	64	75	120	60	58	6	3.10	32,063	•
100	6	26	50	85	36	36	5	2.60	6,100	•
100	8	28	50	85	36	36	5	2.60	8,100	•
100 100	10 12	30 32	50 50	90 95	40 45	42 47	5 5	2.60 2.65	10,100 12,100	•
100	14	34	50	95	45	47	5	2.65	14,100	
100	16	38	50	100	48	53	5	2.85	16,100	•
100 100	18 20	40 42	50 50	100 105	48 50	53 59	5 5	2.85 3.35	18,100 20,100	•
100	25	57	63	115	56	67	6	3.50	25,100	•
100	32	64	75	120	60	72	6	3.95	32,100	

HSK-A shrink fit chuck MQL for automatic tool change

Product information • new MQL Guhring standard, I2 is plug-in depth of DIN 6535 • balancing quality G 6.3 at 15.000 rev./min • for shank tolerance h6 Scope of delivery • incl. MQL length adjustment screw with sealing lip and coolant delivery set Guhring no. 4939

• special dimensions on request

HSKA damping-0 damping-0	• special dil	mensions on	request						
1	HSK-A	for						Code no.	Availability
40	d_3		d_2	d_4	I ₁	l ₂	kg		
40					mm	mm			
40									•
40									•
40									•
40 16 27 33,5 90 48 0,50 16,040 • 50 8 21 27 80 36 0,60 8,050 • 50 10 24 32 85 40 0,70 10,050 • 50 12 24 32 90 45 0,70 14,050 • 50 16 27 34 90 45 0,70 14,050 • 50 16 27 34 95 48 0,70 16,050 • 50 18 33 41,5 95 48 0,70 18,050 • 60 20 33 41,5 95 48 0,70 8,063 • 63 6 21 27 80 36 0,70 8,063 • 63 18 31 4 27 34 90 45 0,80 12,06									•
500 6 21 27 80 36 0,60 8,050 • 500 10 24 32 85 40 0,70 10,050 • 500 12 24 32 90 45 0,70 12,050 • 500 14 27 34 95 48 0,70 14,050 • 50 18 33 41,5 95 48 0,90 18,050 • 50 18 33 41,5 100 50 0,90 18,050 • 63 6 21 27 80 36 0,70 6,063 • 63 16 21 27 80 36 0,70 10,063 • 63 12 24 32 90 45 0,80 14,063 • 63 12 24 32 95 48 0,90 16,063 •									•
500 8 211 27 80 36 0,60 8,050 • 500 10 244 32 90 45 0,70 10,050 • 500 14 27 34 90 45 0,70 14,050 • 50 16 27 34 95 48 0,70 16,050 • 50 18 33 41,5 195 48 0,70 16,050 • 50 20 33 41,5 100 50 0,90 20,050 • 63 6 21 27 80 36 0,70 3,063 • 63 8 21 27 80 36 0,70 10,063 • 63 10 24 32 85 40 0,70 10,063 • 63 16 27 34 90 45 0,80 14,063 • <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>									•
50 10 24 32 85 40 0,70 10,050 • 50 12 24 32 90 45 0,70 12,050 • 50 14 27 34 95 48 0,70 16,050 • 50 18 33 41,5 95 48 0,90 18,050 • 50 20 33 41,5 95 48 0,90 18,050 • 63 6 21 27 80 36 0,70 6,063 • 63 8 21 27 80 36 0,70 10,063 • 63 10 24 32 85 40 0,70 10,063 • 63 11 27 34 90 45 0,80 14,063 • 63 12 24 32 90 45 0,80 14,063 •		6							•
50 12 24 32 90 45 0,70 12,050 • 50 16 27 34 95 48 0,70 14,050 • 50 16 27 34 95 48 0,70 18,050 • 50 20 33 41,5 95 48 0,90 18,050 • 63 6 21 27 80 36 0,70 6,063 • 63 10 24 32 85 40 0,70 10,063 • 63 14 27 34 90 45 0,80 14,063 • 63 14 27 34 95 48 0,90 16,063 • 63 18 33 42 95 48 0,90 18,063 • 63 25 44 52,5 115 56 1,00 20,663 •		8			80				•
50 14 27 34 90 45 0,70 14,050 • 50 18 33 41,5 95 48 0,70 16,050 • 50 18 33 41,5 95 48 0,90 18,050 • 63 6 21 27 80 36 0,70 8,063 • 63 10 24 32 85 40 0,70 10,063 • 63 12 24 32 90 45 0,80 12,063 • 63 14 27 34 90 45 0,80 12,063 • 63 16 27 34 95 48 0,90 16,063 • 63 18 33 42 100 50 1,00 20,663 • 63 20 33 42 100 50 1,00 226,663 •									•
50 16 27 34 95 48 0,70 16,050 • 50 20 33 41,5 95 48 0,90 18,050 • 63 6 21 27 80 36 0,70 6,063 • 63 8 21 27 80 36 0,70 6,063 • 63 10 24 32 85 40 0,70 10,063 • 63 14 27 34 90 45 0,80 12,063 • 63 14 27 34 95 48 0,90 16,063 • 63 18 33 42 95 48 0,90 18,063 • 63 25 44 52,5 115 56 1,00 20,063 • 63 25 44 52,5 115 56 1,00 208,063 •									•
50 18 33 41,5 95 48 0,90 18,050 • 63 6 21 27 80 36 0,70 6,063 • 63 8 21 27 80 36 0,70 8,063 • 63 10 24 32 85 40 0,70 10,063 • 63 12 24 32 90 45 0,80 12,063 • 63 14 27 34 95 48 0,90 16,063 • 63 16 27 34 95 48 0,90 16,063 • 63 18 33 42 100 50 1,00 20,063 • 63 20 33 42 100 50 1,00 20,663 • 63 32 44 52,5 120 60 1,10 32,063 •									•
50 20 33 41,5 100 50 0,90 20,050 • 63 8 21 27 80 36 0,70 8,063 • 63 10 24 32 85 40 0,70 10,063 • 63 12 24 32 90 45 0,80 12,063 • 63 14 27 34 90 45 0,80 14,063 • 63 18 33 42 95 48 0,90 18,063 • 63 18 33 42 95 48 0,90 18,063 • 63 25 44 52,5 115 56 1,00 20,633 • 63 32 44 52,5 115 56 1,00 20,663 • 63 62 21 27 120 36 0,90 210,063 • <									•
63									
63									•
63		0							•
63									•
63									•
63									•
63									•
63									•
63									
63	63	20							•
63								20,000	
63									
63									
63									
63								212,063	
63 8 21 27 160 36 0,80 108,063 • 63 10 24 32 160 40 0,90 110,063 • 63 12 24 32 160 45 0,90 112,063 • 63 14 27 34 160 48 1,00 114,063 • 63 16 27 34 160 48 1,20 118,063 • 63 18 33 42 160 50 1,20 120,063 • 63 25 44 52,5 160 66 1,80 125,063 • 63 32 44 52,5 160 60 1,70 132,063 • 80 6 21 27 85 36 1,30 6,080 • 80 10 24 32 90 40 1,40 12,080 • <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
63									
63 12 24 32 160 45 0,90 112,063 • 63 14 27 34 160 45 1,00 114,063 • 63 16 27 34 160 48 1,00 116,063 • 63 18 33 42 160 48 1,20 118,063 • 63 20 33 42 160 50 1,20 120,063 • 63 25 44 52,5 160 56 1,80 125,063 • 63 32 44 52,5 160 60 1,70 132,063 • 80 6 21 27 85 36 1,30 8,080 • 80 8 21 27 85 36 1,30 8,080 • 80 10 24 32 90 40 1,40 10,080 •		10							
63									
63							1.00		
63 18 33 42 160 48 1,20 118,063 • 63 20 33 42 160 50 1,20 120,063 • 63 25 44 52,5 160 56 1,80 125,063 • 63 32 44 52,5 160 60 1,70 132,063 • 80 6 21 27 85 36 1,30 8,080 • 80 8 21 27 85 36 1,30 8,080 • 80 10 24 32 90 40 1,40 10,080 • 80 12 24 32 95 45 1,50 14,080 • 80 14 27 34 95 45 1,50 14,080 • 80 16 27 34 100 48 1,70 18,080 • <									
63									
63 25 44 52,5 160 56 1,80 125,063 • 63 32 44 52,5 160 60 1,70 132,063 • 80 6 21 27 85 36 1,30 6,080 • 80 8 21 27 85 36 1,30 8,080 • 80 10 24 32 90 40 1,40 10,080 • 80 12 24 32 95 45 1,40 12,080 • 80 14 27 34 95 45 1,50 14,080 • 80 16 27 34 100 48 1,70 18,080 • 80 18 33 42 105 50 1,70 20,080 • 80 25 44 53 115 56 2,20 25,080 • <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
63 32 44 52,5 160 60 1,70 132,063 • 80 6 21 27 85 36 1,30 6,080 • 80 8 21 27 85 36 1,30 8,080 • 80 10 24 32 90 40 1,40 10,080 • 80 12 24 32 95 45 1,40 12,080 • 80 14 27 34 95 45 1,50 14,080 • 80 16 27 34 100 48 1,50 16,080 • 80 18 33 42 105 50 1,70 20,080 • 80 20 33 42 105 50 1,70 20,080 • 80 32 44 53 115 56 2,20 25,080 •	63								
80 6 21 27 85 36 1,30 6,080 80 8 21 27 85 36 1,30 8,080 80 10 24 32 90 40 1,40 10,080 80 12 24 32 95 45 1,40 12,080 80 14 27 34 95 45 1,50 14,080 80 16 27 34 100 48 1,50 16,080 80 18 33 42 100 48 1,70 18,080 80 20 33 42 105 50 1,70 20,080 80 25 44 53 115 56 2,20 25,080 80 32 44 53 120 60 2,10 32,080 100 6 21 27 85 36 2,10 6,100				52,5					
80 8 21 27 85 36 1,30 8,080 80 10 24 32 90 40 1,40 10,080 80 12 24 32 95 45 1,40 12,080 80 14 27 34 95 45 1,50 14,080 80 16 27 34 100 48 1,50 16,080 80 18 33 42 100 48 1,70 18,080 80 20 33 42 105 50 1,70 20,080 80 25 44 53 115 56 2,20 25,080 80 32 44 53 120 60 2,10 32,080 100 6 21 27 85 36 2,20 8,100 100 8 21 27 85 36 2,20 8,100 100 10 24 32 95 45 2,30 10,100									
80 10 24 32 90 40 1,40 10,080 • 80 12 24 32 95 45 1,40 12,080 • 80 14 27 34 95 45 1,50 14,080 • 80 16 27 34 100 48 1,50 16,080 • 80 18 33 42 100 48 1,70 18,080 • 80 20 33 42 105 50 1,70 20,080 • 80 25 44 53 115 56 2,20 25,080 • 80 32 44 53 120 60 2,10 32,080 • 100 6 21 27 85 36 2,10 6,100 • 100 8 21 27 85 36 2,20 8,100 • 100 12 24 32 90 40 2,30 10,100 •		8							•
80 12 24 32 95 45 1,40 12,080 • 80 14 27 34 95 45 1,50 14,080 • 80 16 27 34 100 48 1,50 16,080 • 80 18 33 42 100 48 1,70 18,080 • 80 20 33 42 105 50 1,70 20,080 • 80 25 44 53 115 56 2,20 25,080 • 80 32 44 53 120 60 2,10 32,080 • 100 6 21 27 85 36 2,10 6,100 • 100 8 21 27 85 36 2,20 8,100 • 100 10 24 32 90 40 2,30 10,100 • 100 12 24 32 95 45 2,30 12,100									•
80 14 27 34 95 45 1,50 14,080 • 80 16 27 34 100 48 1,50 16,080 • 80 18 33 42 100 48 1,70 18,080 • 80 20 33 42 105 50 1,70 20,080 • 80 25 44 53 115 56 2,20 25,080 • 80 32 44 53 120 60 2,10 32,080 • 100 6 21 27 85 36 2,10 6,100 • 100 8 21 27 85 36 2,20 8,100 • 100 10 24 32 90 40 2,30 10,100 • 100 12 24 32 95 45 2,30 12,100 • 100 14 27 34 95 45 2,30 14,100 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></td<>									•
80 16 27 34 100 48 1,50 16,080 • 80 18 33 42 100 48 1,70 18,080 • 80 20 33 42 105 50 1,70 20,080 • 80 25 44 53 115 56 2,20 25,080 • 80 32 44 53 120 60 2,10 32,080 • 100 6 21 27 85 36 2,10 6,100 • 100 8 21 27 85 36 2,20 8,100 • 100 10 24 32 90 40 2,30 10,100 • 100 12 24 32 95 45 2,30 12,100 • 100 14 27 34 95 45 2,30 14,100 • 100 16 27 34 100 48 2,30 16,100 <									•
80 18 33 42 100 48 1,70 18,080 • 80 20 33 42 105 50 1,70 20,080 • 80 25 44 53 115 56 2,20 25,080 • 80 32 44 53 120 60 2,10 32,080 • 100 6 21 27 85 36 2,10 6,100 • 100 8 21 27 85 36 2,20 8,100 • 100 10 24 32 90 40 2,30 10,100 • 100 12 24 32 95 45 2,30 12,100 • 100 14 27 34 95 45 2,30 14,100 • 100 16 27 34 100 48 2,30 16,100 • 100 18 33 42 100 48 2,50 18,100	80	16	27				1,50	16,080	•
80 20 33 42 105 50 1,70 20,080 • 80 25 44 53 115 56 2,20 25,080 • 80 32 44 53 120 60 2,10 32,080 • 100 6 21 27 85 36 2,10 6,100 • 100 8 21 27 85 36 2,20 8,100 • 100 10 24 32 90 40 2,30 10,100 • 100 12 24 32 95 45 2,30 12,100 • 100 14 27 34 95 45 2,30 14,100 • 100 16 27 34 100 48 2,30 16,100 • 100 18 33 42 100 48 2,50 18,100 • 100 25 44 53 115 56 3,00 25,100	80	18	33		100	48	1,70		•
80 25 44 53 115 56 2,20 25,080 • 80 32 44 53 120 60 2,10 32,080 • 100 6 21 27 85 36 2,10 6,100 • 100 8 21 27 85 36 2,20 8,100 • 100 10 24 32 90 40 2,30 10,100 • 100 12 24 32 95 45 2,30 12,100 • 100 14 27 34 95 45 2,30 14,100 • 100 16 27 34 100 48 2,30 16,100 • 100 18 33 42 100 48 2,50 18,100 • 100 20 33 42 105 50 2,50 20,100 • 100 25 44 53 115 56 3,00 25,100		20	33	42	105	50	1,70	20,080	•
80 32 44 53 120 60 2,10 32,080 • 100 6 21 27 85 36 2,10 6,100 • 100 8 21 27 85 36 2,20 8,100 • 100 10 24 32 90 40 2,30 10,100 • 100 12 24 32 95 45 2,30 12,100 • 100 14 27 34 95 45 2,30 14,100 • 100 16 27 34 100 48 2,30 16,100 • 100 18 33 42 100 48 2,50 18,100 • 100 20 33 42 105 50 2,50 20,100 • 100 25 44 53 115 56 3,00 25,100 •	80	25	44	53	115	56	2,20	25,080	•
100 6 21 27 85 36 2,10 6,100 100 8 21 27 85 36 2,20 8,100 100 10 24 32 90 40 2,30 10,100 100 12 24 32 95 45 2,30 12,100 100 14 27 34 95 45 2,30 14,100 100 16 27 34 100 48 2,30 16,100 100 18 33 42 100 48 2,50 18,100 100 20 33 42 105 50 2,50 20,100 100 25 44 53 115 56 3,00 25,100	80	32	44	53	120	60	2,10	32,080	•
100 8 21 27 85 36 2,20 8,100 100 10 24 32 90 40 2,30 10,100 100 12 24 32 95 45 2,30 12,100 100 14 27 34 95 45 2,30 14,100 100 16 27 34 100 48 2,30 16,100 100 18 33 42 100 48 2,50 18,100 100 20 33 42 105 50 2,50 20,100 100 25 44 53 115 56 3,00 25,100	100	6	21	27	85	36	2,10	6,100	•
100 10 24 32 90 40 2,30 10,100 100 12 24 32 95 45 2,30 12,100 100 14 27 34 95 45 2,30 14,100 100 16 27 34 100 48 2,30 16,100 100 18 33 42 100 48 2,50 18,100 100 20 33 42 105 50 2,50 20,100 100 25 44 53 115 56 3,00 25,100	100	8	21	27	85	36	2,20	8,100	•
100 12 24 32 95 45 2,30 12,100 • 100 14 27 34 95 45 2,30 14,100 • 100 16 27 34 100 48 2,30 16,100 • 100 18 33 42 100 48 2,50 18,100 • 100 20 33 42 105 50 2,50 20,100 • 100 25 44 53 115 56 3,00 25,100 •		10	24	32	90	40	2,30		•
100 14 27 34 95 45 2,30 14,100 • 100 16 27 34 100 48 2,30 16,100 • 100 18 33 42 100 48 2,50 18,100 • 100 20 33 42 105 50 2,50 20,100 • 100 25 44 53 115 56 3,00 25,100 •		12	24	32	95	45	2,30	12,100	•
100 16 27 34 100 48 2,30 16,100 • 100 18 33 42 100 48 2,50 18,100 • 100 20 33 42 105 50 2,50 20,100 • 100 25 44 53 115 56 3,00 25,100 •		14	27	34	95	45	2,30	14,100	•
100 18 33 42 100 48 2,50 18,100 • 100 20 33 42 105 50 2,50 20,100 • 100 25 44 53 115 56 3,00 25,100 •							2,30		•
100 20 33 42 105 50 2,50 20,100 • 100 25 44 53 115 56 3,00 25,100 •	100	18	33		100	48	2,50	18,100	•
100 25 44 53 115 56 3,00 25,100 •		20	33			50	2,50		•
100 32 44 53 120 60 3,00 32,100		25	44	53	115	56	3,00	25,100	•
	100	32	44	53	120				•

HSK-A/HSK-C extensions with MQL 4 point clamping set

Product information

- MQL suitable
- for single channel systems

Scope of delivery

- incl. MQL 4 point clamping set Guhring no. 4930 and Adaptor Guhring no. 4934
- incl. brass locking ring Guhring no. 4953
- order coolant delivery set separately

HSK-A/HSK-C		SW	kg	Code no.	Availability
d_1 / d_3	l ₁				
	mm				
32	60	2.5	0.30	60,032	0
40	80	3.0	0.70	80,040	•
50	80	4.0	0.90	80,050	•
50	100	4.0	1.10	100,050	•
63	100	5.0	1.80	100,063	•
63	140	5.0	2.30	140,063	•
80	120	6.0	4.20	120,080	•
80	160	6.0	5.80	160,080	•
100	140	8.0	8.00	140,100	•

MQL synchro tapping chucks

Produkt-Informationen

- for single channel systems
- compensate synchronisation errors
- guarantees with minimal length compensation
- high thread quality and optimal tool life
- MQL pressure up to max. 10 bar
- max. torque of the clamping nut 30 Nm
- mounted MQL coolant supply pipe

Scope of delivery

- incl. clamping nut
- incl. MQL supply (special solution)
- Guhring no. 4330, 18,063 incl. clamping key BMK 18
- for Guhring no. 4330, 18,063 order tap collet Guhring no. 4310 18,063 separatly
- order tap collet
- for Guhring no. 4330 20,063 separately
- for Guhring no. 4330 20,063 order sealing washer, Guhring no.4335 and clamping key ER 20, Guhring no. 4913 separately

Guhring no.

4330

HSK-A d ₃	retention nut	for thread	G	d ₁ mm	d ₂ mm	l ₁ mm	tensile force/ pressure ± mm	kg	Code no.	Availability
63	BM18	M3.5-M14	M21x1	4.0-11	25	86	0.15	1.10	18,063	0
63	ER20	M3.5-M14	M25x1.5	4.0-11	34	95.5	0.15	1.30	20,063	•
63	ER32	M3.5-M28	M40x2.5	4.0-20	50	111	0.15	1.70	32.063	0

Collets for MQL

Product information

• MQL or conventional cooling

Scope of delivery

- incl. setting screw with taper
- without sealing disc

Guhring no.

Guhring no.

size	d ₁ x □ mm	l ₁ mm	plug-in depth l ₂ mm	Code no.	Availability
BZ18	4.5 x 3.4	41	23	4,518	0
BZ18	6.0 x 4.9	41	25	6,018	0
BZ18	7.0 x 5.5	41	25	7,018	0
BZ18	8.0 x 6.2/6.3	41	26	8,018	0
BZ18	9.0 x 7.0/7.1	41	27	9,018	0
BZ18	10.0 x 8.0	41	28	10,018	0
BZ18	11.0 x 9.0	41	29	11,018	•

MQL HSK-A coolant delivery set

Product information

- to DIN draft E-DIN 69090-3
- acc. to Guhring's new MQL standard
- for single channel systems
- for automatic interface

for HSK-A	d ₁ mm	d ₂ mm	d ₃ mm	l ₁ mm	l ₂ mm	G	O-ring 1 Viton 75	O-ring 2 Viton 75	Code no.	Availability
40	8	5.4	6.5	35.0	5.5	M12x1.0	7.5x1.5	7.5x1.5	12,040	•
50	10	6.5	7.5	38.5	5.5	M16x1.0	9.0x2.0	9.0x2.0	16,050	•
63	12	8.0	9.5	40.5	4.0	M18x1.0	10.0x2.5	10.0x2.0	18,063	•
80	14	8.0	9.7	44.0	4.0	M20x1.5	13.0x2.0	13.0x2.0	20,080	•
100	16	8.0	11.5	46.0	2.0	M24x1.5	14.0x3.0	14.0x3.0	24,100	•

Length adjustment screw for conventional cooling

For adapting MQL tool holders to meet the requirements of conventional wet machining.

For plain end shanks.

The height of screw head compensates the height of MQL taper.

Product information

- for MQL shrink fit chucks HSK-A
- for MQL hydraulic chucks HSK-A
- for use with shank form to DIN 6535 with plain shank end for conventional cooling

Guhring no.

For HSK-A Clamping- G								0 1	A 11 1 1114
40 6 M7x1 6 15 2.5 2.5 6,040 40 8 M7x1 6 18 3.0 3.0 8,040 50 6 M8x1 8 14 2.5 2.5 6,050 50 8 M8x1 7 18 3.0 3.0 8,050 40/50 10 M8x1 10 17.7 4.0 4.0 10,050 63/80/100 6 M10x1 9 22 2.5 2.5 6,100 63/80/100 8 M10x1 9 22 3.0 3.0 8,100 63/80/100 10 M10x1 10 16.2 4.0 4.0 10,100 40/50/63/80/100 12 M10x1 10 16.2 4.0 4.0 10,100 40/50/63/80/100 12 M10x1 10 16.2 5.0 5.0 12,100 40/50/63/80/100 14 M10x1 10 17.2 5.0 5.0 14,100 50/63/80/100 16 M12x1 16 <th>for HSK-A</th> <th>clamping- Ø</th> <th>G</th> <th>d₁ mm</th> <th>l₁ mm</th> <th>SW 1</th> <th>SW 2</th> <th>Code no.</th> <th>Availability</th>	for HSK-A	clamping- Ø	G	d₁ mm	l₁ mm	SW 1	SW 2	Code no.	Availability
40 8 M7x1 6 18 3.0 3.0 8,040 • 50 6 M8x1 8 14 2.5 2.5 6,050 • 50 8 M8x1 7 18 3.0 3.0 8,050 • 40/50 10 M8x1 10 17.7 4.0 4.0 10,050 • 63/80/100 6 M10x1 9 22 2.5 2.5 6,100 • 63/80/100 8 M10x1 9 22 3.0 3.0 8,100 • 63/80/100 10 M10x1 10 16.2 4.0 4.0 10,100 • 40/50/63/80/100 12 M10x1 10 16.2 4.0 4.0 10,100 • 40/50/63/80/100 12 M10x1 10 16.2 5.0 5.0 12,100 • 40/50/63/80/100 14 M10x1 10 17.2 5.0 5.0 14,100 • 50/63/80/100 16 M12x1 16 </td <td></td> <td>6</td> <td>M7x1</td> <td>6</td> <td></td> <td>2.5</td> <td>2.5</td> <td>6,040</td> <td>•</td>		6	M7x1	6		2.5	2.5	6,040	•
50 6 M8x1 8 14 2.5 2.5 6,050 50 8 M8x1 7 18 3.0 3.0 8,050 40/50 10 M8x1 10 17.7 4.0 4.0 10,050 63/80/100 6 M10x1 9 22 2.5 2.5 6,100 63/80/100 8 M10x1 9 22 3.0 3.0 8,100 63/80/100 10 M10x1 10 16.2 4.0 4.0 10,100 40/ 50/ 63/80/100 12 M10x1 10 16.2 5.0 5.0 12,100 40/ 50/ 63/80/100 14 M10x1 10 17.2 5.0 5.0 14,100 40/ 50/ 63/80/100 16 M12x1 16 18.2 6.0 6.0 16,100 50/ 63/80/100 18 M12x1 16 19.2 8.0 6.0 20,100 50/ 63/80/100 25 M16x1		8	M7x1	6		3.0	3.0	8,040	•
50 8 M8x1 7 18 3.0 3.0 8,050 40/50 10 M8x1 10 17.7 4.0 4.0 10,050 63/80/100 6 M10x1 9 22 2.5 2.5 6,100 63/80/100 8 M10x1 9 22 3.0 3.0 8,100 63/80/100 10 M10x1 10 16.2 4.0 4.0 10,100 40/ 50/ 63/ 80/ 100 12 M10x1 10 16.2 5.0 5.0 12,100 40/ 50/ 63/ 80/ 100 14 M10x1 10 17.2 5.0 5.0 14,100 50/ 63/ 80/ 100 16 M12x1 16 18.2 6.0 6.0 16,100 50/ 63/ 80/ 100 18 M12x1 16 19.2 8.0 6.0 20,100 50/ 63/ 80/ 100 25 M16x1 16 22.7 8.0 6.0 25,100	50	6		8		2.5	2.5	6,050	•
63/80/100 6 M10x1 9 22 2.5 2.5 6,100 • 63/80/100 8 M10x1 9 22 3.0 3.0 8,100 • 63/80/100 10 M10x1 10 16.2 4.0 4.0 10,100 • 40/ 50/ 63/ 80/ 100 12 M10x1 10 16.2 5.0 5.0 12,100 • 40/ 50/ 63/ 80/ 100 14 M10x1 10 17.2 5.0 5.0 14,100 • 50/ 63/ 80/ 100 16 M12x1 16 18.2 6.0 6.0 16,100 • 50/ 63/ 80/ 100 18 M12x1 16 19.2 6.0 6.0 18,100 • 50/ 63/ 80/ 100 20 M16x1 16 19.2 8.0 6.0 20,100 • 63/ 80/ 100 25 M16x1 16 22.7 8.0 6.0 25,100 •		8	M8x1	7		3.0	3.0	8,050	•
63/80/100 8 M10x1 9 22 3.0 3.0 8,100 • 40/50/63/80/100 12 M10x1 10 16.2 5.0 5.0 12,100 • 40/50/63/80/100 14 M10x1 10 17.2 5.0 5.0 12,100 • 40/50/63/80/100 16 M12x1 16 18.2 6.0 6.0 16,100 • 50/63/80/100 18 M12x1 16 19.2 6.0 6.0 18,100 • 50/63/80/100 20 M16x1 16 19.2 8.0 6.0 20,100 • 50/63/80/100 25 M16x1 16 22.7 8.0 6.0 25,100 • 50/63/80/100 55/63/80/100	40/50	10		10	17.7		4.0	10,050	•
63/80/100 10 M10x1 10 16.2 4.0 4.0 10,100 40/50/63/80/100 12 M10x1 10 16.2 5.0 5.0 12,100 40/50/63/80/100 14 M10x1 10 17.2 5.0 5.0 14,100 50/63/80/100 16 M12x1 16 18.2 6.0 6.0 16,100 50/63/80/100 18 M12x1 16 19.2 6.0 6.0 18,100 50/63/80/100 20 M16x1 16 19.2 8.0 6.0 20,100 50/63/80/100 25 M16x1 16 22.7 8.0 6.0 25,100		6		9	22				•
40/ 50/ 63/ 80/ 100 12 M10x1 10 16.2 5.0 5.0 12,100 • 40/ 50/ 63/ 80/ 100 14 M10x1 10 17.2 5.0 5.0 14,100 • 50/ 63/ 80/ 100 16 M12x1 16 18.2 6.0 6.0 16,100 • 50/ 63/ 80/ 100 18 M12x1 16 19.2 6.0 6.0 18,100 • 50/ 63/ 80/ 100 20 M16x1 16 19.2 8.0 6.0 20,100 • 63/ 80/ 100 25 M16x1 16 22.7 8.0 6.0 25,100 •				9	22			8,100	•
40/ 50/ 63/ 80/ 100 14 M10x1 10 17.2 5.0 5.0 14,100 • 50/ 63/ 80/ 100 16 M12x1 16 18.2 6.0 6.0 16,100 • 50/ 63/ 80/ 100 18 M12x1 16 19.2 6.0 6.0 18,100 • 50/ 63/ 80/ 100 20 M16x1 16 19.2 8.0 6.0 20,100 • 63/ 80/ 100 25 M16x1 16 22.7 8.0 6.0 25,100 •		10	M10x1	10	16.2			10,100	•
50/ 63/ 80/ 100 16 M12x1 16 18.2 6.0 6.0 16,100 • 50/ 63/ 80/ 100 18 M12x1 16 19.2 6.0 6.0 18,100 • 50/ 63/ 80/ 100 20 M16x1 16 19.2 8.0 6.0 20,100 • 63/ 80/ 100 25 M16x1 16 22.7 8.0 6.0 25,100 •						5.0		14,100	•
50/ 63/ 80/ 100	50/ 63/ 80/ 100				18.2			16 100	
50/ 63/ 80/ 100 20 M16x1 16 19.2 8.0 6.0 20,100 • 63/ 80/ 100 25 M16x1 16 22.7 8.0 6.0 25,100 •		18		16	19.2			18 100	
63/ 80/ 100 25 M16x1 16 22.7 8.0 6.0 25,100 •	50/ 63/ 80/ 100				19.2			20.100	
63/ 80/ 100 32 M16x1 16 26.7 8.0 6.0 32,100 •				16				25,100	•
		32		16	26.7	8.0	6.0	32,100	•

The application of Guhring's MQL technology does not necessarily require the conversion of the complete stock of hydraulic chucks and shrink fit chucks to the new Guhring MQL standard for tool holders. With the assistance of Guhring's MQL length adjustment screw, Guhring no. 4919, and MQL coolant delivery set, Guhring no. 4924, tool holders such as hydraulic chucks, Guhring no. 4299 and 4399, or shrink fit chucks, Guhring no. 4736, from Guhring's GM 300 program can be converted for application under MQL conditions and automatic tool clamping.

Assembly of conventional MQL system

MQL length adjustment screws

Product information

- for hydraulic chucks and shrink fit chucks
- with special geometry optimised for MQL
- with conical end for tapered MQL shank ends

4919

G			SW1	SW2	Code no.	Availability
	d ₁	I ₁				
	mm	mm				
M5	6	14.8	2.5	2.5	6,000	•
M6	8	15.6	3.0	3.0	8,000	•
M8x1	10	16.1	4.0	4.0	10,000	•
M8x1	10	16.6	3.0	3.0	10,040	•
M6	10	16.6	3.0	3.0	10,032	•
M10x1	12	16.6	5.0	5.0	12,000	•
M6	12	17.6	3.0	3.0	12,032	•
M10x1	14	17.6	5.0	5.0	14,000	•
M6	14	18.6	3.0	3.0	14,040	•
M12x1	16	18.6	5.0	5.0	16,000	•
M6	16	19.6	3.0	3.0	16,040	•
M12x1	18	19.6	5.0	5.0	18,000	•
M16x1	20	20.6	5.0	5.0	20,000	•
M16x1	25	22.6	8.0	6.0	25,000	•
M16x1	32	26.1	8.0	6.0	32,000	•

MQL coolant delivery sets

Product information

• replace conventional coolant delivery sets, Guhring no. 4949, when applying MQL

Scope of delivery

• complete MQL coolant delivery set consisting of: coolant pipe, cap nut MQL tube and O-rings

DSF = hydraulic chucks WSF = shrink fit chucks

for	WSF	clamping-Ø						G	Code no.	Availability
HSK-A	DSF	mm	d ₁	d ₂	d ₄	l ₁	l ₃			
32	DSF	mm	mm 2.5	mm	mm	mm E4.2	mm	M10x1	22.010	-
32	WSF	6 6	2.5 2.5	6 6	3.5 3.5	54.2 45.1	28.0 18.9	M10x1	32,010 32,020	•
32	DSF	8	3.0	6	3.5	54.3	28.1	M10x1	32,030	
32	DSF	10	3.0	6	3.5	55.8	29.6	M10x1	32,050	•
32	WSF	10	3.0	6	3.5	45.7	19.5	M10x1	32,060	•
32	DSF	12	3.0	6	3.5	56.6	30.4	M10x1	32,070	•
32	WSF	8/12	3.0	6	3.5	45.2	19.0	M10x1	32,080	•
40	505				4.0	45.4	400		40.040	
40	DSF	6	2.5	8	4.0	45.1	16.0	M12x1	40,010	•
40	WSF DSF	6	2.5 3.0	8	4.0	56.0 56.2	26.9 15.8	M12x1 M12x1	40,020 40,030	•
40 40	WSF	8 8	3.0	8 8	4.0 4.0	56.2	27.0	M12x1	40,030	
40	DSF	10	3.0	8	4.0	46.3	17.1	M12x1	40,050	
40	WSF	10	3.0	8	4.0	51.7	22.5	M12x1	40,060	
40	DSF	12	3.0	8	4.0	46.7	17.5	M12x1	40,070	•
40	WSF	12/14	3.0	8	4.0	57.2	28.0	M12x1	40,100	•
40	WSF	16	3.0	8	4.0	54.2	25.0	M12x1	40,120	•
F.0	DOF		0.5	40	4.0	44.0	44.0	D440 4	F0 010	
50	DSF	6	2.5	10	4.0	44.6	11.9	M16x1	50,010	•
50 50	WSF DSF	6 8	2.5 3.0	10 10	4.0 4.0	55.4 46.1	22.7 13.4	M16x1 M16x1	50,020 50,030	•
50	WSF	8	3.0	10	4.0	46.5	13.4	M16x1	50,040	
50	DSF	10	4.0	10	4.0	45.7	13.0	M16x1	50,050	
50	WSF	10	4.0	10	4.0	46.1	13.4	M16x1	50,060	
50	DSF	12	5.0	10	4.0	46.1	13.4	M16x1	50,070	•
50	WSF	12	5.0	10	4.0	55.7	23.0	M16x1	50,080	•
50	DSF	14	5.0	10	4.0	51.5	18.8	M16x1	50,090	•
50	WSF	14	5.0	10	4.0	55.7	22.9	M16x1	50,100	•
50 50	DSF DSF	16	5.0 5.0	10 10	4.0	52.8 53.2	20.1 20.5	M16x1	50,110	•
50	WSF	18 16/18	5.0	10	4.0 4.0	53.2	25.0	M16x1 M16x1	50,130 50,140	
50	DSF	20	5.0	10	4.0	51.5	18.8	M16x1	50,150	
50	WSF	20	5.0	10	4.0	60.7	28.0	M16x1	50,160	
										-
63	DSF	6	2.5	12	4.0	45.7	9.5	M18x1	63,010	•
63	DSF	6	2.5	12	4.0	126.9	90.6	M18x1	63,011	•
63	DSF	6	2.5	12	4.0	176.9	140.6	M18x1	63,012	•
63 63	WSF WSF	6	2.5	12 12	4.0	56.7 137.7	20.5	M18x1	63,020	•
63	DSF	6 8	2.5 3.0	12	4.0 4.0	46.0	101.4 9.8	M18x1 M18x1	63,021 63,030	
63	DSF	8	3.0	12	4.0	126.1	89.9	M18x1	63,031	
63	DSF	8	3.0	12	4.0	176.2	139.9	M18x1	63,032	
63	WSF	8	3.0	12	4.0	57.0	20.8	M18x1	63,040	•
63	WSF	8	3.0	12	4.0	137.0	100.7	M18x1	63,041	•
63	DSF	10	4.0	12	4.0	51.7	15.5	M18x1	63,050	•
63	DSF	10	4.0	12	4.0	122.2	86.0	M18x1	63,051	•
63	DSF	10	4.0	12	4.0	172.2	135.9	M18x1	63,052	•
63 63	WSF WSF	10 10	4.0 4.0	12 12	4.0 4.0	55.7 132.2	19.5 95.9	M18x1 M18x1	63,060 63,061	
63	DSF	12/14/20	5.0	12	4.0	52.1	15.9	M18x1	63,070	
	50.	12/14/20	0.0	12	7.0	02.1	10.0	MIOXI	00,070	

MQL coolant delivery sets

							Gu	hring no.	49	24
for	WSF	clamping-Ø						G	Code no.	Availability
HSK-A	DSF	mm	d₁ mm	d ₂ mm	d₄ mm	l ₁ mm	l ₃ mm			
63	WSF	12/14	5.0	12	4.0	44.6	19.5	M18x1	63,080	•
63	WSF	12/14	5.0	12	4.0	127.1	90.8	M18x1	63,081	
63	DSF	16/18	5.0	12	4.0	53.8	17.6	M18x1	63,090	•
63	DSF	12/14	5.0	12	4.0	117.6	81.4	M18x1	63,091	•
63 63	DSF WSF	12/14 16/18	5.0 5.0	12 12	4.0 4.0	167.6 57.5	131.3 21.3	M18x1 M18x1	63,092 63,100	•
63	WSF	20	5.0	12	4.0	60.7	24.5	M18x1	63,110	
63	DSF	16	5.0	12	4.0	114.3	78.0	M18x1	63,111	•
63	DSF	25/32	6.0	12	4.0	77.0	40.8	M18x1	63,120	•
63 63	WSF DSF	25 18	6.0 5.0	12 12	4.0 4.0	69.0 114.6	32.8 78.3	M18x1 M18x1	63,130 63,131	•
63	DSF	16/18	5.0	12	4.0	164.6	128.3	M18x1	63,131	
63	WSF	32	6.0	12	4.0	70.7	34.5	M18x1	63,140	•
63	WSF	16/18	5.0	12	4.0	124.3	88.0	M18x1	63,141	•
63	DSF	20	5.0	12	4.0	112.9	76.6	M18x1	63,151	•
63 63	DSF WSF	20 20	5.0 5.0	12 12	4.0 4.0	162.9 122.1	126.6 85.8	M18x1 M18x1	63,152 63,161	•
63	WSF	25	6.0	12	4.0	116.2	79.9	M18x1	63,181	
63	WSF	32	6.0	12	4.0	112.2	75.9	M18x1	63,201	•
							_			
80	DSF WSF	6	2.5	14	4.0	44.8	5.5	M20x1.5	80,010	•
80 80	DSF	6 8	2.5 3.0	14 14	4.0 4.0	61.2 44.9	21.9 5.6	M20x1.5 M20x1.5	80,020 80,030	•
80	WSF	8	3.0	14	4.0	61.3	22.0	M20x1.5	80,030	
80	DSF	10	4.0	14	4.0	50.9	11.6	M20x1.5	80,050	•
80	WSF	10	4.0	14	4.0	61.3	22.0	M20x1.5	80,060	•
80	DSF DSF	12 14	5.0	14	4.0	51.3	12.0	M20x1.5 M20x1.5	80,070	•
80 80	WSF	12/14	5.0 5.0	14 14	4.0 4.0	51.6 61.3	12.3 22.0	M20x1.5	80,090 80,100	
80	DSF	16	5.0	14	4.0	57.9	18.6	M20x1.5	80,110	
80	DSF	18	5.0	14	4.0	58.3	19.0	M20x1.5	80,130	•
80	WSF	16/18	5.0	14	4.0	63.3	24.0	M20x1.5	80,140	•
80 80	DSF WSF	20 20	5.0 5.0	14 14	4.0 4.0	56.6 66.3	17.3 27.0	M20x1.5 M20x1.5	80,150 80,160	•
80	DSF	25	6.0	14	4.0	53.1	13.8	M20x1.5	80,170	
80	WSF	25	6.0	14	4.0	70.3	31.0	M20x1.5	80,180	
80	DSF	32	6.0	14	4.0	77.2	37.9	M20x1.5	80,190	•
80	WSF	32	6.0	14	4.0	71.3	32.0	M20x1.5	80,200	•
100	DSF	6	2.5	16	4.0	53.0	9.2	M24x1,5	100,010	
100	WSF	6	2.5	16	4.0	63.9	20.1	M24x1,5	100,010	
100	DSF	8	3.0	16	4.0	53.7	9.9	M24x1,5	100,030	•
100	WSF	8	3.0	16	4.0	64.6	20.8	M24x1,5	100,040	•
100 100	DSF WSF	10 10	4.0	16 16	4.0 4.0	63.3 63.3	19.5 19.5	M24x1,5 M24x1,5	100,050	•
100	DSF	12	4.0 5.0	16	4.0	63.8	20.0	M24x1,5	100,060 100,070	
100	DSF	14	5.0	16	4.0	64.2	20.4	M24x1,5	100,090	
100	WSF	12/14	5.0	16	4.0	63.3	19.5	M24x1,5	100,100	•
100	DSF	16	5.0	16	4.0	65.4	21.6	M24x1,5		•
100 100	DSF WSF	18 16/18	5.0 5.0	16 16	4.0 4.0	65.8 65.3	22.0 21.5	M24x1,5 M24x1,5	100,130 100,140	•
100	DSF	20	5.0	16	4.0	69.2	25.4	M24x1,5	100,140	•
100	WSF	20	5.0	16	4.0	68.3	24.5	M24x1,5	100,160	•
100	DSF	25	6.0	16	4.0	68.6	24.8	M24x1,5	100,170	•
100 100	WSF DSF	25 32	6.0 6.0	16 16	4.0 4.0	72.3 64.6	28.5 20.8	M24x1,5 M24x1,5	100,180 100,190	•
100	WSF	32	6.0	16	4.0	73.3	29.5	M24x1,5	100,190	•
								,5		

Manual tool clamping with MQL

Installation with adaptors

Application in transfer lines, fixtures, setting equipment (i.e. in drilling spindles), in multi-spindle drilling heads

adaptor (integrated)

4-point clamping technology for MQL and conventional cooling

Technical information and advantages

Our 4-point clamping sets for minimal quantity lubrication or conventional cooling are 100 % compatible. They are suitable for radial manual clamping. Primarily designed for installation in spindles (short drilling spindles, multispindle drilling heads). Most prominant features are:

- simple and hence more economic spindle manufacture
- short, small diameter spindles with constricted spindle bearing spacing.

Two clamping segments displaced by 180° with 2 clamping planes each are uniformly moved outwards with a differential threaded spindle, thereby generating the necessary clamping force. For conventional internal cooling our MQL 4-point clamping sets are suitable for a pressure up to 80 bar.

Thanks to their identical internal spindle contour, especially for the application with minimal quantity lubrication (MQL) and with MQL optimised tools we developed MQL 4-point clamping sets offering the following features and advantages:

 a central, coaxial MQL duct with consistent internal diameter ensures MQL coolant delivery to the tool without coolant pockets and offers quick operating times

① We recommend MA max. for rough machining and milling operations. For drilling and reaming operations a lower deviation of MA max. up to 30% is permissible. Please check the torque with a torque wrench.

[©] Depending on temperature and lubricating conditions these values can be up to 15% lower.

© Due to the screwed connection MT max. can be lower with adaptors liegen.

HSK-C	max. torque M _A [Nm] ①	SW	max. drawing force [kN] ②	bend. moment	max. transferrable torsional moment M _T [Nm] ② ③
32	3	2.5	8.5	72	105
40	6	3	12.5	135	180
50	14	4	24	330	390
63	24	5	32	570	680
80	40	6	45	1000	1570
100	60	8	53	1620	4200

4-point clamping technology for MQL and conventional cooling

General notes: Our manual clamping sets must not be operated with motor-driven tools (impulse screwdriver or similar). The hexagonal key should not exceed the key size over its entire length, this largely prevents excessive torque being transferred. We recommend the T-handle hexagonal key, Guhring no. 4912. For accurate setting of the maximum torque and achieving the maximum interface rigidity, we recommend the application of a torque wrench, Guhring no. 4915, with hexagonal sockets, Guhring no. 4916. Production drawings of the spindle contour to suit direct installation are available on request including .dxf.

MQL 4-point clamping set connection dimensions for new designs

	for Solings HSK	Soin Soindle	hosicon in Posico	06/1/200% 11 +0.5	three for	intellation of the spinor	That o
	HSK 10% 75	D1/H9	D2/H9	11 +0.5	l2	13	14
	32 24,000	4	4	31.8	-	39.8	36.0
	40 30,000	7	5	30.5	34.8	41.8	39.0
	50 38,000	9	6	35.8	41.8	49.5	46.5
,	63 48,000	11	8	43.3	52.5	66.5	58.5
	80 60,000	13	10	53.9	69.9	85.9	71.1
	100 75,000	15	12	67.9	85.5	105.5	89.0

Dimensions without tolerance specification to DIN ISO 2768 m

MQL 4-point clamping sets

Product information

- •The central and coaxial MQL supply with constant internal diameter prevents coolant from consolidating
- for a coolant pressure up to 80 bar

Scope of delivery

- complete as shown in illustration
- Installation and operating instructions

Guhring no.

4930

for HSK-C	d ₁ mm	d ₂ mm	I ₁ mm	G	SW1	SW _A	kg	Code no.	Availability
32 40	16.7 20.6	3 4	39.5 49.5	M10 M12	2.5 3	3 4	0.05 0.09	24,000 30,000	•
50	25.5	5	59.0	M16	4	5	0.18	38,000	•
63 80	33.0 41.0	6 8	76.0 98.0	M20 M24	5 6	6 8	0.37	48,000 60,000	•
100	52.0	10	117.5	M24	8	10	1.30	75,000	•

Component parts for MQL 4-point clamping sets, Guhring no. 4930

• retention spindle only for adaptor.

• if the spindle cannot be locked, use torque support, Guhring no. 4963.

		O-rings		4931	4932	4933	4935	
for HSK-C	1 NBR 70	2 NBR 70	3 NBR 70	Spindle with clamping jaw	Ejector with tube	Retention spindle	Retention screw	Availability
32	10.82x1.78	4.0x1.0	-	24,000	24,000	24,000	24,000	0
40	13.0×2.0	6.0×1.0	5.0×1.0	30,000	30,000	30,000	30,000	0
50	16.0×2.0	8.0×1.0	6.0×1.0	38,000	38,000	38,000	38,000	0
63	20.3×2.4	10.0×1.0	8.0×1.0	48,000	48,000	48,000	48,000	0
80	24.0×3.0	12.0×1.5	10.0×1.5	60,000	60,000	60,000	60,000	•
100	31.34x3.53	15.0x1.5	12.0x1.7	75,000	75,000	75,000	75,000	0

Adaptor for MQL 4-point clamping sets

Product information

• Adaptor for direct installation in spindle and spindle adaptors in existing spindles

Scope of delivery

- complete as shown in illustration
- O-ring

4934

Guhring no.

Guhring no.

for HSK-C	d ₁ mm	d ₂ mm	l ₁ mm	O-ring 1 NBR70	O-ring 2 2xNBR70	O-ring 3 NBR70	Code no.	Availability
32	4.0	-	19	4.0×1.0	-	2x1	24,000	•
40	5.0	7	28	4.5x1.0	4x2.5	3x1	30,000	•
50	6.0	9	32	5.5x1.5	5x4.0	4x1	38,000	•
63	8.0	11	42	7.5x1.5	8x4.0	6x1	48,000	•
80	10.2	13	56	9.0x1.5	10x5.0	8x1	60,000	•
100	12.0	15	58.5	12.0x1.5	12.0x4.0	10x1	75,000	•

Clamping screw for MQL 4-point clamping sets

Product information

- necessary for installation of MQL 4-point clamping set in spindle adaptors Guhring no. 4386 and 4387
- change against standard retention bolt

Scope of delivery

• complete as shown in illustration

4935

		1				1
for HSK-C	d ₁ mm	l ₁ mm	SW	O-ring 2 x NBR 70	Code no.	Availability
32	-	21.5	13	-	24,000	•
40	5.0	21	16	5x1.0	30,000	•
50	6.0	25	18	6x1.0	38,000	•
63	8.0	31	24	8x1.0	48,000	•
80	10.0	36	24	10x1.5	60,000	•
100	12.0	40	32	12x1.7	75,000	•

MQL HSK-A hydraulic chuck for manual tool change

Product information

- new MQL standard
- for 1-channel systems
- balancing quality: G6.3/15,000 rev./min
- clamping-Ø for shaft tolerance h6
- axial length setting

Scope of delivery

- incl. MQL length adjustment screw with sealing lip and coolant delivery set Guhring no. 4940
- incl. clamping key Guhring no. 4912

4209

Guhring no.

11014 4	,						0)4/		0 1	A '1 1 '11'4
HSK-A d ₃	for clamping-Ø	d ₂	d ₄	I ₁	l ₂	l ₅	SW	kg	Code no.	Availability
l u3	d ₁ h6 mm	mm	mm	mm	mm	mm				
50	6	26	40	80	36	38	4	0.95	6,050	•
50	8	28	40	80	36	38	4	0.95	8,050	
50	10	30	40	85	40	44	4	0.95	10,050	
50	12	32	40	90	45	49	4	0.95	12,050	•
50	14	34	40	90	45	49	4	0.95	14,050	
50	16	38	53	95	48	36	5	1.25	16,050	
50	18	40	57	95	48	36	5	1.25	18,050	
50	20	42	60	100	50	39	5	1.25	20,050	
63	6	26	50	80	36	34.5	5	1.25	6,063	•
63	8	28	50	80	36	35.5	5	1.25	8,063	•
63	10	30	50	85	40	40	5	1.25	10,063	•
63	12	32	50	90	45	45	5	1.35	12,063	•
63	14	34	50	90	45	46	5	1.35	14,063	•
63	16	38	50	95	48	51	5	1.45	16,063	•
63	18	40	50	95	48	52	5	1.45	18,063	•
63	20	42	50	100	50	58	5	1.45	20,063	•
63	25	57	63	115	56	50	6	2.45	25,063	•
63	32	64	75	120	60	58	6	3.10	32,063	•
100	6	26	50	85	36	36	5	2.6	6,100	•
100	8	28	50	85	36	36	5	2.6	8,100	•
100	10	30	50	90	40	42	5	2.6	10,100	•
100	12	32	50	95	45	47	5	2.65	12,100	•
100	14	34	50	95	45	47	5	2.65	14,100	•
100	16	38	50	100	48	53	5	2.85	16,100	•
100	18	40	50	100	48	53	5	2.85	18,100	•
100	20	42	50	105	50	59	5	3.35	20,100	•
100	25	57	63	115	56	67	6	3.5	25,100	•
100	32	64	75	120	60	72	6	3.95	32,100	•

MQL HSK-A shrink fit chuck for manual tool change

Product information

- new MQL standard,
- 12 is plug-in depth at DIN 6535
- for 1-channel systems
- balancing quality: G 6.3 / 15,000 rev./min
- for shank tolerance h6

Scope of delivery

- incl. MQL length adjustment screw with sealing lip and coolant delivery set Guhring no. 4940
- incl. clamping key Guhring no. 4912

Guhring no.

4735

• special dimensions on request

HSK-A d ₃	for clamping-Ø	d ₂	d ₄	I ₁	l ₂	kg	Code no.	Availability
	d ₁ h6 mm	mm	mm	mm	mm	0		
40	6	21	27	80	36	0.40	6,040	•
40 40	8 10	21 24	27 32	80 80	36 40	0.40 0.50	8,040 10,040	•
40	12	24	32	90	45	0.50	12,040	
40	14	27	33.5	90	45	0.60	14,040	
40	16	27	33.5	90	48	0.50	16,040	
50	6	21	27	80	36	0.60	6,050	•
50	8	21	27	80	36	0.60	8,050	•
50 50	10 12	24 24	32 32	85 90	40 45	0.70 0.70	10,050 12,050	•
50	14	27	34	90	45	0.70	14,050	
50	16	27	34	95	48	0.70	16,050	
50	18	33	41.5	95	48	0.90	18,050	•
50	20	33	41.5	100	50	0.90	20,050	•
	_							
63 63	6	21 21	27 27	80 80	36 36	0.70 0.70	6,063 8,063	•
63	8 10	24	32	80 85	40	0.70	10,063	•
63	12	24	32	90	45	0.80	12,063	
63	14	27	34	90	45	0.80	14,063	
63	16	27	34	95	48	0.90	16,063	•
63	18	33	42	95	48	0.90	18,063	•
63	20	33	42	100	50	1.00	20,063	•
63	25	44	52.5	115	56	1.00	25,063	•
63	32	44	52.5	120	60	1.10	32,063	•
63	6	21	27	120	36	0.90	206,063	•
63	8	21	27	120	36	1.00	208,063	•
63	10	24	32	120	40	1.10	210,063	•
63	12	24	32	120	45	1.20	212,063	•
63	6	21	27	160	36	0.80	106,063	•
63	8	21	27	160	36	0.80	108,063	•
63	10	24	32	160	40	0.90	110,063	•
63 63	12 14	24 27	32 34	160 160	45 45	0.90 1.00	112,063 114,063	
63	16	27	34	160	45 48	1.00	116,063	
63	18	33	42	160	48	1.20	118,063	
63	20	33	42	160	50	1.20	120,063	•
63	25	44	52.5	160	56	1.80	125,063	•
63	32	44	52.5	160	60	1.70	132,063	•
80	6	21	27	OE.	36	1 20	6 000	
80	6 8	21	27	85 85	36	1.30 1.30	6,080 8,080	•
80	10	24	32	90	40	1.40	10,080	
80	12	24	32	95	45	1.40	12,080	
80	14	27	34	95	45	1.50	14,080	•

MQL HSK-A shrink fit chuck for manual tool change

						Guhring no.	47	35
HSK-A d ₃	for clamping-Ø d ₁ h6 mm	d ₂ mm	d ₄ mm	l ₁ mm	l ₂ mm	kg	Code no.	Availability
80 80 80 80	16 18 20 25 32	27 33 33 44 44	34 42 42 53 53	100 100 105 115 120	48 48 50 56 60	1.50 1.70 1.70 2.20 2.10	16,080 18,080 20,080 25,080 32,080	•
100 100 100 100 100 100 100 100 100 100	6 8 10 12 14 16 18 20 25 32	21 21 24 24 27 27 27 33 33 44	27 27 32 32 34 34 42 42 53 53	85 85 90 95 95 100 100 105 115	36 36 40 45 45 48 48 50 56 60	2.10 2.20 2.30 2.30 2.30 2.30 2.50 2.50 3.00 3.00	6,100 8,100 10,100 12,100 14,100 16,100 18,100 20,100 25,100 32,100	

HSK-A/HSK-C extensions with MQL 4 point clamping set

Product information

- MQL suitable
- for single channel systems

Scope of delivery

- incl. MQL 4 point clamping set Guhring no. 4930 and Adaptor Guhring no. 4934
- incl. brass locking ring Guhring no. 4953
- order coolant delivery set separately

Guhring no.

HSK-A/HSK-C		SW	kg	Code no.	Availability
d_1/d_3	l ₁				
	mm				
32	60	2.5	0.30	60,032	0
40	80	3.0	0.70	80,040	•
50	80	4.0	0.90	80,050	•
50	100	4.0	1.10	100,050	•
63	100	5.0	1.80	100,063	•
63	140	5.0	2.30	140,063	•
80	120	6.0	4.20	120,080	•
80	160	6.0	5.80	160,080	•
100	140	8.0	8.00	140,100	•

MQL HSK-A coolant delivery set (filler)

Product information

- according to new Guhring MQL standard
- for single channel systems
- for manual tool change

Guhring no.

for HSK-A	d ₁ mm	d ₂ mm	d ₃ mm	l ₁ mm	l ₂ mm	G	O-ring 1 & 2 NBR 70	Code no.	Availability
40	7.6	5.4	6.8	13.8	5.5	M12x1.0	7.5x1.5	12,040	•
50	9.6	6.5	7.8	15.8	5.5	M16x1.0	9.0x2.0	16,050	
63	11.6	8.0	9.7	16.3	4.0	M18x1.0	10.0x2.5	18,063	
80	13.6	8.0	9.7	18.4	4.0	M20x1.5	13.0x2.0	20,080	
100	15.6	8.0	11.7	18.4	2.0	M24x1.5	14.0x3.0	24,100	

Length adjustment screw for conventional cooling

To adapt MQL tool holders to meet the requirements of conventional wet machining.

For plain end shanks.

The height of screw head compensates the height of MQL taper.

Product information

- for MQL HSK-A shrink fit chucks
- for MQL HSK-A hydraulic chucks
- for use with shank according to DIN 6535 with plain shank end for conventional cooling

Guhring no.

for	clamping-	G	d.	1	SW 1	SW 2	Code no.	Availability
HSK-A	Ø		mm	mm				
40	6	M7x1	6	15	2.5	2.5	6,040	•
40	8	M7x1	6	18	3.0	3.0	8,040	•
50	6	M8x1	8	14	2.5	2.5	6,050	•
50	8	M8x1	7	18	3.0	3.0	8,050	•
40/50	10	M8x1	10	17.7	4.0	4.0	10,050	•
63/80/100	6	M10x1	9	22	2.5	2.5	6,100	•
63/80/100	8	M10x1	9	22	3.0	3.0	8,100	•
63/80/100	10	M10x1	10	16.2	4.0	4.0	10,100	•
40/ 50/ 63/ 80/ 100	12	M10x1	10	16.2	5.0	5.0	12,100	•
40/ 50/ 63/ 80/ 100	14	M10x1	10	17.2	5.0	5.0	14,100	•
50/ 63/ 80/ 100	16	M12x1	16	18.2	6.0	6.0	16,100	•
50/ 63/ 80/ 100	18	M12x1	16	19.2	6.0	6.0	18,100	•
50/ 63/ 80/ 100	20	M16x1	16	19.2	8.0	6.0	20,100	•
63/ 80/ 100	25	M16x1	16	22.7	8.0	6.0	25,100	•
63/ 80/ 100	32	M16x1	16	26.7	8.0	6.0	32,100	•

Technical information to the new Guhring MQL standard

With HSK-tool holders to the new Guhring MQL standard, the diameter d6 is modified to DIN 69893-1 to a length I1 with the diameter d1.

Nom. size HSK	40	50	63	80	100
d6	7.0 +0.1	8.0 +0.1	10.0 +0.1	10.2	12
l1min	8	8	6	6	4

Table 1: modified dimensions - HSK to DIN 69893-1

Within the HSK sizes MQL tool holders are listed the respective threads for the MQL length adjustment screw and the respective width across flats. Some of these dimensions do not correspond with dimensions of tool holders for conventional cooling.

HSK-A	Clamping-Ø	d1 mm	G	SW
40	6	-	M 7x1	3
40	8	8	M 7x1	3
40	10	10	M 8x1	3
40	12	12	M 10x1	3
40	14	14	M 10x1	3
40	16	16	M 12x1	3
50	6	-	M 8x1	4
50	8	8	M 8x1	4
50	10	10	M 8x1	4
50	12	12	M 10x1	4
50	14	14	M 10x1	4
50	16	16	M 12x1	4
50	18	18	M 12x1	4
50	20	20	M 16x1	4
63 / 80 / 100	6	-	M 10x1	4
64 / 80 / 100	8	-	M 10x1	4
63 / 80 / 100	10	10	M 10x1	4
63 / 80 / 100	12	12	M 10x1	5
63 / 80 / 100	14	14	M 10x1	5
63 / 80 / 100	16	16	M 12x1	5
63 / 80 / 100	18	18	M 12x1	5
63 / 80 / 100	20	20	M 16x1	5
63 / 80 / 100	25	25	M 16x1	5
63 / 80 / 100	32	32	M 16x1	5

Table 2: Threads and widths across flats of MQL length adjustment screw

Installation coolant delivery set/MQL coolant delivery unit

- 1. The HSK holder must be clean, free of swarf and undamaged.
- 2. Grease the O-rings prior to assembly.
- 3. Centrally insert the complete coolant delivery set (coolant pipe, union nut and 2 O-rings) in the HSK with the assistance of the socket spanner.
 - When inserting the MQL coolant delivery unit, it is paramount to ensure that the MQL pipe is inserted centrally and undamaged into the MQL length setting screw (do not kink).
- 4. Screw in the coolant delivery set/coolant delivery unit and tighten (see table for torque figures)
- 5. Check coolant pipe for radial mobility.

Torque figures

for HSK	MA Nm		
32	7		
40	11		
50	15		
63	20		
80	25		
100	30		

Installation of MQL coolant delivery set 4939

Installation of MQL coolant delivery set filler 4940

Installation of MQL coolant delivery unit 4924

Mounting adaptor for MQL length setting screw

Assembly instruction for MQL components

Installation of sealing lip adjustment screw from the side of the holder bore

Automatic application

For automatic application of the holder use the MQL coolant delivery set Guhring no. 4939. Insert the MQL coolant delivery set in the socket spanner Guhring no. 4911, screw in the holder and fasten (torque figures see page 27). Withdraw the socket spanner and check mobility.

Manual application

For manual application of the holder use the filler Guhring no. 4940. Push filler on the adapter Guhring no 4948 to the stop and insert together in the socket spanner Guhring no. 4911. Then screw the complete unit in the holder and fasten (torque figures see page 27).

Now push the adapter Guhring no. 4972 through the MQL coolant delivery set or filler in the holder. Position the sealing lip adjustment screw through the holder bore on the adaptor seats, push to stop with the socket spanner Guhring no. 4912. and screw all the way (fig. 1).

With certain clamping diameters, the adjustment screw has to be installed from the HSK side (fig. 2):

- with HSK 40 and HSK 50 => Ø 6 mm
- with HSK 63 => Ø 6 and 8 mm
- with HSK 80 and HSK 100 => Ø 6 / 8 / 10 mm

With these diameters, insert the sealing lip adjustment screw in the MQL coolant delivery set or filler and screw the complete unit in the holder.

General notes

Lightly oil the sealing lip at the external diameter prior to installation and always insert in the filler or the MQL coolant unit with a rotary movement!

Mounting adaptor for MQL HSK-A coolant delivery set (filler)

Product information

- adaptor for socket spanner, Guhring no. 4911
- for mounting MQL HSK-A coolant delivery set (filler), Guhring no. 4940, for manual tool change

Scope of delivery

• incl. operating manual

Guhring no.

4948

	nexagonal key				
size	d ₁ mm	d ₂ mm	l ₁ mm	Code no.	Availability
HSK 40 HSK 50 HSK 63 HSK 80 HSK 100	5.4 6.5 8 8	8 10 12 14 16	38.5 42 46 48.5 51.5	8,040 10,050 12,063 14,080 16,100	•

Assembly instruction for MQL components

Installation of MQL coolant delivery set (filler)

Manual application

For manual application of the holder use the filler Guhring no. 4940. Push filler on the adaptor Guhring no. 4948 to the stop and insert together in the socket spanner Guhring no. 4911. Now screw the complete unit into the holder and fasten (torque figures see page 27).

Prior to tightening the MQL coolant delivery unit (filler) adjust the adjustment screw towards the holder bore if necessary! To withdraw the MQL coolant delivery unit (filler) use adaptor Guhring no. 4948. Adjust the adjustment screw to foremost position if necessary. After withdrawal draw off the adaptor.

MQL system types

The provision of the MQL medium to the tool can be achieved in two ways: the aerosol mixture can be prepared outside the machine and conveyed to the machining location (1-channel system) or compressed air and MQL medium are conveyed separately to the mixing chamber where they are then mixed together (2-channel system).

The aerosol feed to the machining location is achieved via a suitable minimal quantity lubrication rotary adaptor (preferably with axial flowthrough), the spindle, the clamping system and finally the cutting tool. Unavoidable cross-section modifications should be as streamlined as possible.

1-channel MQL system

With a 1-channel MQL system, a lubricating aerosol is created in a separate MQL unit attached to the machine tool. Special nozzle systems inside a pressurised container create a lubricating aerosol via a regulated compressed air feed, its neat oil content adjustable and then maintained within the physical limits by the MQL control.

The 2-channel MQL system

With a 2-channel system the neat oil reaches the rotary adaptor from the unit via a ring line and a as short as possible stub line. In it is incorporated a quick valve that regulates minute quantities of neat oil. The neat oil is transported into the tool holder via a lance attached in the spindle.

The second channel of the rotary adaptor is used for the air supply to the tool holder. Only at this point the air is mixed with the neat oil. To achieve this, the tool holder possesses a pressed-in pipe nozzle in which the mixing chamber is located. Neat oil and air can be mixed with this system in more or less any quantities. The route from the mixing chamber to the point of destination is only minimal resulting in a rapid response time and allowing a very quick alteration of the volume of neat oil.

The development of Guhring's new MQL-Check 3000 allows simple and quick measurements of the coolant volume and the reaction time with minimal quantity lubrication (MQL) directly at the tool point. For the user, the result is a considerable increase in process reliability with MQL machining.

Especially with minimal quantity lubrication, optimal delivery of the minimal coolant volume to the cutting edge is paramount. An insufficient delivery or a delayed response time respectively can lead to disasterous results such as premature wear, a deterioration in machining quality or even tool breakage. In contrast, excessive coolant volume results in increased costs through unnecessary coolant consumption and additional cleaning expense for components or machines as well as an unnecessary impact on the environment and personnel.

Until now, measuring the coolant volume exiting at the tool point was practically impossible. With the MQL-Check 3000, Guhring is for the first time offering a simple to operate instrument for quickly measuring the coolant volume directly at the tool point. MQL-Check 3000 is simply installed in the machine, the tool point is passed into the opening of the measuring unit and the coolant delivery switched on. The measuring unit of the MQL-Check 3000 sends the recorded data remotely to the associated display equipment, on which the resulting values are displayed in ml/h. Furthermore, the data interface on the display facility allows the transfer of the data to a PC as an option, making further evaluations and above all the documentation of the measurements possible.

Subsequently, the user benefits from:

- simple, quick measurements of the coolant volume directly at the tool point
- ascertaining the actual response time, i.e. the time from starting the system to the coolant exiting at the tool point
- reproduceable and at any time comparable measuring data
- a workshop suitable system, wireless operation
 in terms of power supply as well as data transfer
- comparitive measuring regarding function of MQL equipment, machine, spindle, tool holder and tool

Check

Technical Data

Measuring range: 5 to 60 ml/h
Tool diameter range: 3 to 20 mm

Measuring position: 0 to 90° (vertical and

horizontal machining

Power supply: battery

MQL-Check 3000 consists of:

- measuring unit incl. sender and magnetic base for installation with horizontal machining
- display facility with receiver
- measuring filter for measuring range up to 12 ml/h, up to 30 ml/h and up to 60 ml/h

Data interface and PC software are available as an option.

GUHRING

Guhring oHG

P.O. Box 100247 · D-72423 Albstadt Herderstr. 50-54 · D-72458 Albstadt

Telephone: +49 74 31 17-0 Fax: +49 74 31 17-2 79 www.guehring.de

OUR PRODUCT RANGE:

1. DRILLING TOOLS IN HIGH SPEED STEEL AND CARBIDE

Twist drills
Ratio drills
Micro-precision drills
Oil feed drills
Subland drills
Centre drills
Core drills
Gun drills
Drilling systems with interchangeable inserts

2. THREAD CUTTING TOOLS IN HIGH SPEED STEEL AND CARBIDE

Machine taps and fluteless taps
Oil feed taps and oil feed fluteless taps
Hand taps
Thread milling cutters
Dies

3. MILLING CUTTERS IN HIGH SPEED STEEL AND CARBIDE

Ratio end mills
Slot drills
End mills
Radius profile cutters
Hard profile cutters
Diesinking cutters

4. REAMING TOOLS IN HIGH SPEED STEEL AND CARBIDE

NC machine chucking reamers Machine and machine chucking reamers Taper pin reamers Hand reamers

5. COUNTERSINKING TOOLS IN HIGH SPEED STEEL AND CARBIDE

Countersinks, counterbores and spot facers Short counterbores, back spot facers De-burring tools

6. CUTTING TOOLS IN ULTRA-HARD MATERIALS

Face milling cutter PF 1000 Cermet and ceramic tools PCD- and PCB-tipped tools

7. COATED TOOLS

A-tools, TiAIN-coated
SuperA-tools, AITiN-coated
C-tools, TiCN-coated
F-tools, FIRE-coated (allround)
P-tools, AICrNN-coated
S-tools, TiN-coated (allround)
M-tools, MolyGlide-coated

8. MODULAR TOOLING SYSTEMS

TOOLING SYSTEM GM 300

Tool holders, clamping systems and accessories to ISO 12164, DIN 69893 and DIN 69871 for transfer lines, machining and turning centres

FLEXIBLE TOOLING SYSTEM GE 100

a tooling system for the combined machining operations facing, chamfering, boring, centering etc.

ISO INDEXABLE INSERTS, SHORT CLAMPING HOLDERS AND KV 400 CARTRIDGES

9. SPECIAL TOOLS

to sketch or drawing, the more complex, the better

10. CARBIDES FOR PRECISION CUTTING TOOLS

11. CARBIDE SPECIAL PARTS FOR THE FORMING, MACHINING AND WEAR PROTECTION INDUSTRY

Cold heading dies, ribbed rolls, dies, mandrels, drawing dies, gear cutters, etc.

12. TOOL RESTORATION SERVICE

Re-grinding, re-coating, tool management

05 091 / 0993-IX-05 • Printed in Germany